Skip to content

CO-Assignment-2

I

For the following transistor-level circuit, fill in the truth table. What is the logical expression of Z in terms of A and B? (12 points)

Z=A B=AB

A BC D Z
0 1 1 0 0
0 0 1 1 0
1 1 0 0 1
1 0 0 1 0

II

Fibonacci numbers are the sequence of numbers Fn defined by the linear recurrence equation Fn=Fn1+Fn2 where F1=F2=1. It is conventional to define F0=0. Given a word size of four bits, design a circuit to detect if a given input binary number I3I2I1I0 is a Fibonacci number or not. Show the following steps: (20 points)

  1. Truth Table
I3I2I1I0isF
00001
00011
00101
00111
01000
01011
01100
01110
10001
10010
10100
10110
11000
11011
11100¡¡
11110
  1. Sum of Product
(I3 I2 I1 I0)+(I3 I2 I1 I0)+(I3 I2 I1 I0)+(I3 I2 I1 I0)+(I3 I2 I1 I0)+(I3 I2 I1 I0)+(I3 I2 I1 I0)
  1. Simplify the logical expression using logical identities

(I3 I2 I1 I0)+(I3 I2 I1 I0)+(I3 I2 I1 I0)+(I3 I2 I1 I0)+(I3 I2 I1 I0)+(I3 I2 I1 I0)+(I3 I2 I1 I0)

=(I3 I2 I1)+(I3 I2 I1)+(I2 I1 I0)+(I2 I1 I0)

=(I3 I2)+( I2 I1 I0)+(I2 I1 I0)

  1. Simplify the logical expression using K-MAP.

=(I3 I2)+( I2 I1 I0)+(I2 I1 I0)

  1. Draw the logical circuit and verify it.

III

Draw a combinational logic circuit of an eight-input multiplexor where the inputs (D7, D6, D5, D4, D3, D2, D1, D0) are each one-bit variables. Label the values of inputs and outputs of each gate of the circuit, assuming the eight inputs have the values (1, 0, 0, 1, 1, 1, 0, 0) respectively, and assuming D1 is selected. [Note: Assume you have an 3-8 decoder to use as a black box and do not draw the decoder circuit which is part of the multiplexor.] (8 points)

502y6j

IV

Investigate the operation of the following circuit. Assume the initial state is 0000. Trace the outputs (the Qs) as the clock ticks and determine the purpose of the circuit. You must show your trace to complete your answer. (10 points) JRr3J4

  • Equation
    • Clock equation

      • CP0=CP1=CP2=CP3
    • Dirve equation

      • J0=Q3n,K0=Q3n
      • J1=Q0n,K1=Q0n
      • J2=Q1n,K2=Q1n
      • J3=Q2n,K3=Q2n
    • State equation

      • Feature equation: Qn+1=JQn+KQn
      • Q0n+1=Q3n Q0n+Q3nQ0n=Q3n
      • Q1n+1=Q0n Q1n+Q0nQ1n=Q0n
      • Q2n+1=Q1n Q2n+Q1nQ2n=Q1n
      • Q3n+1=Q2n Q3n+Q2nQ3n=Q2n
  • State
Q3nQ2nQ1nQ0nQ3n+1Q2n+1Q1n+1Q0n+1
00000001
00010011
00100101
00110111
01001001
01011011
01101101
01111111
10000000
10010010
10100100
10110110
11001000
11011010
11101100
11111110

State Diagram0000>0001>0011>0111>1111>1110>1100>1000>0000StateDiagram This state diagram describes the function of a four-bit binary right-cycling shifter.

V

Complete the truth table for the following sequential circuit: (8 points)

4f6xhs
ABXAB
00010
00100
01010
01100
10011
10111
11010
11110

VI

Design a finite state machine (FSM) for a counter that counts through the 3-bit prime numbers downwards and loop: {7>5>3>2>7>5>3>2}. Assume the counter starts with initial prime set to 111 as its first 3 bit prime number. (12 points)

  1. You need to provide the state transition diagram. Assume that the state is stored in three D Flip Flops. Hint: The set of all 3-bit prime numbers includes 2, 3, 5 and 7. (4 points)
  • State Diagram
  1. Design the sequential circuit for the counter. The circuit is driven by the clock. The output is a 7 segment LED display. The various digits from 0 through 9 can be displayed using a 7-segment display as shown in the following figure.
Q2nQ1nQ0nQ2n+1Q1n+1Q0n+1abcdefgLED
11110111100007
10101110110115
01101011110013
01011111011012

a=1b=Q2n+Q1n+Q0nc=Q2n+Q1n+Q0nd=Q2n+Q1n+Q0ne=Q2nQ1nQ0nf=Q2nQ1nQ0ng=Q2n+Q1n+Q0nD0=Q0n+1=Q2n+Q1n+Q0nD1=Q1n+1=Q2n+Q1n+Q0nD2=Q2n+1=Q2Q1Q0+Q2nQ1nQ0n

zGv0xW