ML-Regression
Linear Regression is used for regression tasks to predict continuous outputs by minimizing the mean squared error. Ridge Regression is a regularized version of linear regression that adds a penalty term to the loss function to prevent overfitting. Logistic Regression is used for binary classification tasks to predict probabilities and classify data points.
Linear Regression
1. Hypothesis
Linear regression models the output
2. Cost Function
The cost function used is the Mean Squared Error (MSE):
3. Optimization
- Gradient Descent:
- Normal Equation:
Logistic Regression
1. Hypothesis
Logistic regression maps the linear function to a probability using the sigmoid function:
- Prediction Rule:
- Predict
if . - Predict
if .
- Predict
2. Cost Function
The cost function for logistic regression is:
3. Optimization
- Gradient Descent:
4. Sigmoid Function Properties
maps inputs to , representing probabilities. - Derivative:
Ridge Regression
岭回归是一种线性回归的正则化变体,通过在损失函数中加入
Loss function
岭回归的目标是最小化以下损失函数:
: 正则化参数,控制正则化强度。 : 等价于普通的线性回归。 : 所有 。
: 正则化项,用于约束参数大小,防止过拟合。
岭回归有一个闭式解,可以通过修改普通线性回归的正规方程得到:
: 设计矩阵。 : 单位矩阵。
梯度下降解 通过梯度下降最小化损失函数:
- 正则化部分
是对 的惩罚。
Logistic Regression
Suppose predict
"
Cost Function and gradient
The cost function for logistic regression is defined as:
When
if . As
, . When
, the model predicts , but .
When
if goes to infinite if
Simplification of Logistic Regression Cost Function
The overall cost function for logistic regression is defined as:
Cost Function:
Note:
To fit parameters
To make a prediction given new
Output
The cost function for logistic regression is:
Gradient Descent Algorithm:
Repeat:
(Simultaneously update all
Derivative: