Skip to content

Network Deconvolution|Network deconvolution as a general method to distinguish direct dependencies in networks

XiAh8Y

Assumptions

定义一个观测到的相似度矩阵,矩阵里的值可以是变量i,j的关系,也可以是其他的相似度值

gi,jobs represents the similarity value between the observed patterns of variables i and j in the network.

We assume that the observed dependency matrix, Gobs, comprises both direct and indirect dependency effects

Gobs=Gdir+Gindir

观测矩阵包含直接和间接依赖效应

Indirect contributions

  • Can be length 2 or higher
  • Can be multiple effects along varying paths
  • Not included Self-loops

间接影响可以是长度为2或更高,可以是沿着不同路径的多个效应,不包括自环

Gindir=Gidr2+Gdir3+...

The power associated with each term in Gindir corresponds to the level of indirection contributed by that term. 幂次指的是间接程度

Derivation

Gobs=Gdir+Gindir

By using the eigen decomposition principle, we have

Gdir=UΣdirU1Gdir+Gindir=(a) Gdir+Gdir2+=(b) (UΣdirU1)+(UΣdir2U1)+= U(Σdir+Σdir2+)U1= U(i1(λ1dir)i000000i1(λndir)i)U1=(c)U(λ1dir1λ1dir000000λndir1λndir)U1.

By using the eigen decomposition of the observed network Gobs, we have Gobs=UΣobsU1, where

Σobs=(λ1obs00λnobs).λidir1λidir=λiobs1inλidir=λiobsλiobs+11inGdir=UΣdirU1

Network deconvolution Methods

m8qixI

Linear Scaling Step

The observed dependency matrix is scaled linearly so that all eigenvalues of the direct dependency matrix are between −1 and 1.

线性缩放使所有特征值在 -1~1 之间

Decomposition Step

The observed dependency matrix Gobs is decomposed to its eigenvalues and eigenvectors such that

Gobs=UΣobsU1

Where:

  • U is the matrix of eigenvectors,
  • Σobs is a diagonal matrix containing the eigenvalues of Gobs,
  • U1 is the inverse of the eigenvector matrix U.

将观察到的依赖矩阵分解为特征值和特征向量

Deconvolution Step

A diagonal eigenvalue matrix Σdir is formed whose ith component is

λidir=λiobsλiobs+1

Then, the output direct dependency matrix Gdir is obtained as

Gdir=UΣdirU1

根据公式计算 λidir ,在把其放入对角矩阵中,最后得到直接依赖矩阵

Gdir=UΣdirU1

Experiments

Several network applications

  • Distinguishing direct targets in gene expression regulatory networks
    • 区分基因表达调控网络中的直接目标
  • Recognizing directly interacting amino-acid residues for protein structure prediction from sequence alignments
    • 通过序列比对识别直接相互作用的氨基酸残基以预测蛋白质结构
  • Distinguishing strong collaborations in co-authorship social networks using connectivity information alone.
    • 仅使用连接信息来区分共同创作社交网络中的强协作。

Gene expression regulatory networks

Distinguishing direct targets in gene expression regulatory networks

Social Network

Distinguishing strong collaborations in co-authorship social networks using connectivity information alone.

social networks